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model system lacking an internal general acid.” Condensation
reactions of HETpp would proceed with inversion and internal
general base catalysis to avoid J, in analogy to reactions of
acetyl coenzyme A%

We are further examining the enzymatic and nonenzymatic
reactions we have discussed to elucidate in detail the processes
involved in catalysis by TPP of reactions involving pyruvate.
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Automerization of Naphthalene
Sir:

We wish to report a 13C-labeling experiment which reveals
the scrambling of « and 8 carbon atoms in naphthalene at high

temperatures! (eq 1).
A »
QQ ==

The possibility of this rearrangement? first occurred to us
during our studies on the thermal isomerization of azulene to
naphthalene, a venerable mechanistic puzzle in the chemistry
of nonbenzenoid aromatic hydrocarbons.* One plausible
mechanism for the latter transformation involves initial con-
version of azulene to tetracyclic triene 1 followed by ring
opening of the bicyclobutane intermediate to naphthalene (eq
2), The symmetry allowed nature of both steps® lends special
appeal to this pathway.6

Reversibility of this process would provide a pathway for
scrambling the o« and 3 carbon atoms of naphthalene (eq 3).
Note as a further consequence of the transformations proposed
in eq 2 and 3 that the two angular carbon atoms (+y) are pre-
dicted to retain their original identity and never migrate to the
« or B positions of naphthalene.

Table L. Distribution of the '3C Label? (£4%) in the Pyrolysate of
Naphthalene-/-13C As a Function of Contact Time

Contact time, sec® a, % 3, % ¥, %
0.0¢ 100% 0 0
1.0 78 18 4
2.0 71 26 3
5.0 58 40 2
8.0 53 43 2
1.0 52 46 2

2 These values'! have been corrected for the natural abundance of
13C. ® The “contact time” was calculated from the known rate at
which naphthalene passed through the apparatus'® and the volume
of 19he hot zone. ¢ This entry refers to the material before pyroly-
sis.

D —
(2)
w25 * % o%s * o2a

1

b
h
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From the reported activation parameters for the azulene —
naphthalene isomerization” and the known difference in free
energy between these two species,® one can estimate for the
reverse reaction a AG¥ of 86 kcal/mol at 1035 °C, a tem-
perature at which isomerization should proceed to an observ-
able extent in a flow system. Azulene should not accumulate
to any significant extent during the equilibration, of course,
since the thermodynamic stability of naphthalene greatly ex-
ceeds that of the nonbenzenoid isomer.®

To test the above predictions, we slowly sublimed naph-
thalene-a-13C? through a quartz pyrolysis apparatus!® heated
t0 1035 + 5 °C. Collection of the pyrolysate in a liquid nitrogen
trap and analysis!! of the recovered naphthalene for distri-
bution of the 1C label gave the results summarized in Table
113

These data clearly reveal scrambling of the « and 3 carbon
atoms in naphthalene at high temperatures.!* Furthermore,
within experimental error (+£4%), the angular carbon atoms
(v) retain their original identity and remain unlabeled even
after several half-lives of the ¢-3 scrambling. Both of these
experimental observations stand in complete harmony with the
mechanistic scheme outlined in eq 3.

Isomerization of naphthalene-/-!3C to naphthalene-2-13C
under these conditions follows the rate law for a unimolecular
reversible reaction with Keq = 1 (Figure 1).!> From the plot
in Figure 1 (slope = 2k), one can thus calculate for the au-
tomerization of naphthalene at 1035 °C an experimental AG*
of 86 kcal/mol,!¢ a value in striking agreement with that es-
timated for the thermal isomerization of naphthalene to azu-
lene.

It is tempting to conclude that naphthalene does indeed
isomerize reversibly to azulene by the mechanism proposed in
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Figure 1, Plot of the data in Table I according to the rate law for a uni-
molecular reversible reaction with Keq = 1(k = (1/20)In (0.5/0.5 —

/))."

eq 3; however, the experimental data do not yet justify such a
conclusion. Intermediates other than azulene, e.g., 2 or 3, could
equally well account for the observed scrambling of a and 8
carbon atoms (but not 4) in naphthalene. The highly strained
prismane (2) can presumably be excluded on energetic
grounds, for it must certainly lie more than 86 kcal /mol above
naphthalene,!” but the benzvalene (3) appears no more
strained than the isomeric bicyclobutane 1. At present, we see
no reason to favor intermediate 1 in preference to 3 except that
conservation of orbital symmetry? forbids concerted valence
isomerization of naphthalene to the latter in the ground state.'®
Suitable double-labeling experiments could distinguish be-

tween these two possibilities.

2 3

Even if naphthalene does automerize via azulene, as sug-
gested by the agreement between AG¥pregicied and AGFexpy,
the mechanism for interconversion of those two aromatic hy-
drocarbons still remains open to speculation. We are currently
studying the thermal isomerization of azulene-'3C to test the
mechanistic hypothesis in eq 2.
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Dibenzo[ gh,op|nonalenide Dianion.
A Novel Aromatic System Derived from Nonalene
Sir:

Fused conjugated systems containing 4n 7 electrons, simi-
larly to the monocyclic cyclooctatetraene,! may acquire aro-
matic character either by oxidation to the corresponding di-
cation, or by formation of the dianion. These ions behave like
peripheral aromatic systems containing (4n + 2) = electrons.?
Only the heptalenide dianion? and the pentalenide dianion?
are known in this series.” Benzannelated derivatives, e.g., the
dibenzo[cd,gh]pentalenide dianion, have been prepared and
exhibit aromatic character.6 We wish to report the synthesis
and properties of the dibenzo{gh,op]nonalenide dianion (1),
the first derivative of the hitherto unknown nonalenide dianion
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